Files
go-xmlsec/encrypt.go
2015-12-23 15:09:37 -05:00

285 lines
8.9 KiB
Go

package xmlsec
// #cgo pkg-config: xmlsec1
// #include <xmlsec/xmlsec.h>
// #include <xmlsec/xmltree.h>
// #include <xmlsec/xmlenc.h>
// #include <xmlsec/templates.h>
// #include <xmlsec/crypto.h>
//
// // Note: the xmlSecKeyData*Id itentifiers are macros, so we need to wrap them
// // here to make them callable from go.
// static inline xmlSecKeyDataId MY_xmlSecKeyDataAesId(void) { return xmlSecKeyDataAesId; }
// static inline xmlSecKeyDataId MY_xmlSecKeyDataDesId(void) { return xmlSecKeyDataDesId; }
// static inline xmlSecTransformId MY_xmlSecTransformAes128CbcId(void) { return xmlSecTransformAes128CbcId; }
// static inline xmlSecTransformId MY_xmlSecTransformAes192CbcId(void) { return xmlSecTransformAes192CbcId; }
// static inline xmlSecTransformId MY_xmlSecTransformAes256CbcId(void) { return xmlSecTransformAes256CbcId; }
// static inline xmlSecTransformId MY_xmlSecTransformDes3CbcId(void) { return xmlSecTransformDes3CbcId; }
// static inline xmlSecTransformId MY_xmlSecTransformRsaOaepId(void) { return xmlSecTransformRsaOaepId; }
// static inline xmlSecTransformId MY_xmlSecTransformRsaPkcs1Id(void) { return xmlSecTransformRsaPkcs1Id; }
//
import "C"
import (
"errors"
"unsafe"
)
// SessionCipherType represents which session cipher to use to encrypt the document.
type SessionCipherType int
const (
// DefaultSessionCipher (the zero value) represents the default session cipher, AES256-CBC
DefaultSessionCipher SessionCipherType = iota
// Aes128Cbc means the session cipher should be AES-128 in CBC mode.
Aes128Cbc
// Aes192Cbc means the session cipher should be AES-192 in CBC mode.
Aes192Cbc
// Aes256Cbc means the session cipher should be AES-256 in CBC mode.
Aes256Cbc
// Des3Cbc means the session cipher should be triple DES in CBC mode.
Des3Cbc
)
// CipherType represent which cipher to use to encrypt the document
type CipherType int
const (
// DefaultCipher (the zero value) represents the default cipher, RSA-OAEP
DefaultCipher CipherType = iota
// RsaOaep means the cipher should be RSA-OAEP
RsaOaep
// RsaPkcs1 means the cipher should be RSA-PKCS1
RsaPkcs1
)
// DigestAlgorithmType represent which digest algorithm to use when encrypting the document.
type DigestAlgorithmType int
const (
// DefaultDigestAlgorithm (the zero value) represents the default cipher, SHA1
DefaultDigestAlgorithm DigestAlgorithmType = iota
// Sha1 means the digest algorithm should be SHA-1
Sha1
// Sha256 means the digest algorithm should be SHA-256
Sha256
// Sha384 means the digest algorithm should be SHA-384
Sha384
// Sha512 means the digest algorithm should be SHA-512
Sha512
)
// EncryptOptions specifies the ciphers to use to encrypt the document.
type EncryptOptions struct {
SessionCipher SessionCipherType
Cipher CipherType
DigestAlgorithm DigestAlgorithmType
}
var errInvalidAlgorithm = errors.New("invalid algorithm")
// global string constants
// Note: the invocations of C.CString() here return a pointer to a string
// allocated from the C heap that would normally need to freed by calling
// C.free, but because these are global, we can just leak them.
var (
constDsigNamespace = (*C.xmlChar)(unsafe.Pointer(C.CString("http://www.w3.org/2000/09/xmldsig#")))
constDigestMethod = (*C.xmlChar)(unsafe.Pointer(C.CString("DigestMethod")))
constAlgorithm = (*C.xmlChar)(unsafe.Pointer(C.CString("Algorithm")))
constSha512 = (*C.xmlChar)(unsafe.Pointer(C.CString("http://www.w3.org/2001/04/xmlenc#sha512")))
constSha384 = (*C.xmlChar)(unsafe.Pointer(C.CString("http://www.w3.org/2001/04/xmldsig-more#sha384")))
constSha256 = (*C.xmlChar)(unsafe.Pointer(C.CString("http://www.w3.org/2001/04/xmlenc#sha256")))
constSha1 = (*C.xmlChar)(unsafe.Pointer(C.CString("http://www.w3.org/2000/09/xmldsig#sha1")))
)
// Encrypt encrypts the XML document to publicKey and returns the encrypted
// document.
func Encrypt(publicKey, doc []byte, opts EncryptOptions) ([]byte, error) {
startProcessingXML()
defer stopProcessingXML()
keysMngr := C.xmlSecKeysMngrCreate()
if keysMngr == nil {
return nil, mustPopError()
}
defer C.xmlSecKeysMngrDestroy(keysMngr)
if rv := C.xmlSecCryptoAppDefaultKeysMngrInit(keysMngr); rv < 0 {
return nil, mustPopError()
}
key := C.xmlSecCryptoAppKeyLoadMemory(
(*C.xmlSecByte)(unsafe.Pointer(&publicKey[0])),
C.xmlSecSize(len(publicKey)),
C.xmlSecKeyDataFormatCertPem,
nil, nil, nil)
if key == nil {
return nil, mustPopError()
}
if rv := C.xmlSecCryptoAppKeyCertLoadMemory(key,
(*C.xmlSecByte)(unsafe.Pointer(&publicKey[0])),
C.xmlSecSize(len(publicKey)),
C.xmlSecKeyDataFormatCertPem); rv < 0 {
C.xmlSecKeyDestroy(key)
return nil, mustPopError()
}
if rv := C.xmlSecCryptoAppDefaultKeysMngrAdoptKey(keysMngr, key); rv < 0 {
return nil, mustPopError()
}
parsedDoc, err := newDoc(doc, nil)
if err != nil {
return nil, err
}
defer closeDoc(parsedDoc)
var sessionCipherTransform C.xmlSecTransformId
switch opts.SessionCipher {
case DefaultSessionCipher:
sessionCipherTransform = C.MY_xmlSecTransformAes256CbcId()
case Aes256Cbc:
sessionCipherTransform = C.MY_xmlSecTransformAes256CbcId()
case Aes192Cbc:
sessionCipherTransform = C.MY_xmlSecTransformAes192CbcId()
case Aes128Cbc:
sessionCipherTransform = C.MY_xmlSecTransformAes128CbcId()
case Des3Cbc:
sessionCipherTransform = C.MY_xmlSecTransformDes3CbcId()
default:
return nil, errInvalidAlgorithm
}
// create encryption template to encrypt XML file and replace
// its content with encryption result
encDataNode := C.xmlSecTmplEncDataCreate(parsedDoc, sessionCipherTransform,
nil, (*C.xmlChar)(unsafe.Pointer(&C.xmlSecTypeEncElement)), nil, nil)
if encDataNode == nil {
return nil, mustPopError()
}
defer func() {
if encDataNode != nil {
C.xmlFreeNode(encDataNode)
encDataNode = nil
}
}()
// we want to put encrypted data in the <enc:CipherValue/> node
if C.xmlSecTmplEncDataEnsureCipherValue(encDataNode) == nil {
return nil, mustPopError()
}
// add <dsig:KeyInfo/>
keyInfoNode := C.xmlSecTmplEncDataEnsureKeyInfo(encDataNode, nil)
if keyInfoNode == nil {
return nil, mustPopError()
}
// add <enc:EncryptedKey/> to store the encrypted session key
var cipherTransform C.xmlSecTransformId
switch opts.Cipher {
case DefaultCipher:
cipherTransform = C.MY_xmlSecTransformRsaOaepId()
case RsaOaep:
cipherTransform = C.MY_xmlSecTransformRsaOaepId()
case RsaPkcs1:
cipherTransform = C.MY_xmlSecTransformRsaPkcs1Id()
}
encKeyNode := C.xmlSecTmplKeyInfoAddEncryptedKey(keyInfoNode, cipherTransform, nil, nil, nil)
if encKeyNode == nil {
return nil, mustPopError()
}
// we want to put encrypted key in the <enc:CipherValue/> node
if C.xmlSecTmplEncDataEnsureCipherValue(encKeyNode) == nil {
return nil, mustPopError()
}
// add <dsig:KeyInfo/> and <dsig:KeyName/> nodes to <enc:EncryptedKey/>
keyInfoNode2 := C.xmlSecTmplEncDataEnsureKeyInfo(encKeyNode, nil)
if keyInfoNode2 == nil {
return nil, mustPopError()
}
// Add a DigestMethod element to the encryption method node
{
encKeyMethod := C.xmlSecTmplEncDataGetEncMethodNode(encKeyNode)
var algorithm *C.xmlChar
switch opts.DigestAlgorithm {
case Sha512:
algorithm = constSha512
case Sha384:
algorithm = constSha384
case Sha256:
algorithm = constSha256
case Sha1:
algorithm = constSha1
case DefaultDigestAlgorithm:
algorithm = constSha1
default:
return nil, errInvalidAlgorithm
}
node := C.xmlSecAddChild(encKeyMethod, constDigestMethod, constDsigNamespace)
C.xmlSetProp(node, constAlgorithm, algorithm)
}
// add our certificate to KeyInfoNode
x509dataNode := C.xmlSecTmplKeyInfoAddX509Data(keyInfoNode2)
if x509dataNode == nil {
return nil, mustPopError()
}
if dataNode := C.xmlSecTmplX509DataAddCertificate(x509dataNode); dataNode == nil {
return nil, mustPopError()
}
// create encryption context
var encCtx = C.xmlSecEncCtxCreate(keysMngr)
if encCtx == nil {
return nil, mustPopError()
}
defer C.xmlSecEncCtxDestroy(encCtx)
// generate a key of the appropriate type
switch opts.SessionCipher {
case DefaultSessionCipher:
encCtx.encKey = C.xmlSecKeyGenerate(C.MY_xmlSecKeyDataAesId(), 256,
C.xmlSecKeyDataTypeSession)
case Aes128Cbc:
encCtx.encKey = C.xmlSecKeyGenerate(C.MY_xmlSecKeyDataAesId(), 128,
C.xmlSecKeyDataTypeSession)
case Aes192Cbc:
encCtx.encKey = C.xmlSecKeyGenerate(C.MY_xmlSecKeyDataAesId(), 192,
C.xmlSecKeyDataTypeSession)
case Aes256Cbc:
encCtx.encKey = C.xmlSecKeyGenerate(C.MY_xmlSecKeyDataAesId(), 256,
C.xmlSecKeyDataTypeSession)
case Des3Cbc:
encCtx.encKey = C.xmlSecKeyGenerate(C.MY_xmlSecKeyDataDesId(), 192,
C.xmlSecKeyDataTypeSession)
default:
return nil, errInvalidAlgorithm
}
if encCtx.encKey == nil {
return nil, mustPopError()
}
// encrypt the data
if rv := C.xmlSecEncCtxXmlEncrypt(encCtx, encDataNode, C.xmlDocGetRootElement(parsedDoc)); rv < 0 {
return nil, mustPopError()
}
encDataNode = nil // the template is inserted in the doc, so we don't own it
return dumpDoc(parsedDoc), nil
}